

Absence of Asbestos in Municipal Sewage Sludge Ashes

Kusum J. Patel-Mandlik, 1 Charles G. Manos, 1 and Donald J. Lisk2

¹Environmental Science and Engineering, Inc., Gainesville, Florida 32602-3053 and ²Toxic Chemicals Laboratory, New York State College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853-7401

(Bishop et al. 1985; Patel-Mandlik et al. In earlier studies 1987), asbestos was found in sewage sludges in several cities in the United States using x-ray diffraction, high power light polarized light microscopy or electron optical microscopy. In a number of cities in the United States, sewage microscopy. sludge is incinerated at temperatures up to 1,000°C. Temperatures of 550°C or higher dehydroxylate the asbestos lattice resulting in alteration or even destruction of the mineral (EPA 1982). Since and other key parameters used to refractive index change above 550°C, asbestos minerals it was of interest to analyze for the presence of asbestos in typically produced municipal sludge ashes. In the work reported here, sewage sludge ashes from 10 American cities were obtained and analyzed for the presence of asbestos.

MATERIALS AND METHODS

sludge ashes obtained and details pertaining to their treatment during incineration are given in Table 1. All of the sludges were dewatered by vacuum filtration and the final ash disposed by landfilling. remaining after incineration was process may include addition of ferric chloride or aluminum sulfate to precipitate phosphates and addition of polymers as a settling agent for suspended solids and phosphate floc during Addition of lime may also be used to primary sedimentation. precipitate heavy metals and other solids. The resulting solids are largely dewatered by vacuum filtration or centrifugation. solids may then be fed into the top of the incinerator where they are further dried, incinerated and cooled as they progress toward the bottom where the ash collects and is removed by trucking or Exhaust scrubbers remove the fly ash which may then be conveyed back and added (as a filtering aid) to incoming sewage prior to its primary sedimentation. In some cities the sludge that is incinerated is a mixture of dewatered primary and excess activated sludge.

Send reprint requests to Donald J. Lisk at the above address.

Table 1. Data pertaining		to municipal sewage sludge incinerator ashes studied. Ratio (%)	cinerator ashe	s studied.	Feed	
	Sewage	<pre>industrial: domestic</pre>	Combustion	Combustion	rate tons/	
City	treatment plant	contribution	unit	temp. °C	ha ha	Additives
Dunkirk, NY	Dunkirk Wastewater	60:40	Multiple	870	ю	Ferric chloride,
Grand Rapids,	Grand Rapids Wastewater	30:70	Multiple	up to 980	4	Ferric chloride,
MI	Treatment Plant	4	(7) hearth	•	i	lime
Greensboro, NC	North Buffalo Sewage Treatment Plant	30:70	Multiple (5) hearth	870	2.5	Polymer
Hilton, NY	Northwest Quadrant	2:98	Multiple	775-870	4	Aluminum sulfate
Indianapolis,	irearment Flant Dept. of Public Works	70:30	(o) neartn Multiple	800-1000	5	Dry sludge ash
NI	•		(8) hearth			
Kalamazoo, MI	City of Kalamazoo	50:50	Multiple	775	7	None
	Treatment Plant		(7) hearth			
Lorton, VA	Lower Potomac	10:90	Multiple	775-870	Ŋ	Ferric chloride,
	Treatment Plant		(6) hearth			lime
Naugatuck, CT	Borough Naugatuck	50:50	Multiple	775-870	9	Ferric chloride
	Wastewater Treatment		(7) hearth			lime, aluminum
	Plant					sulfate, polymer
Saginaw, MI	Saginaw Wastewater	Heavily	Multiple	870-925	5	Ferric chloride,
	Treatment Plant	industrial	(6) hearth			lime
Youngstown, OH	Youngstown Wastewater	25:75	Multiple	800	9	Ferric chloride,
	Treatment Plant		(7) hearth			lime
Amoist sludge cake.	ake.					

The sludge ashes received were air dried, pulverized in a hammermill containing a 3-mm sieve, mixed by tumbling and subsampled for analysis of asbestos. Each sample was thoroughly examined under a stereo binocular microscope and the fibrous material was removed and mounted for polarized light microscopy.

RESULTS AND DISCUSSION

The results of analysis of the sludge ash samples are given in Table 2. Whereas glass fibers were detected in three of the ash samples (Indianapolis, Naugatuck and Saginaw) asbestos fibers were not detected in any of them.

Table 2. Results of analysis of the sewage sludge ashes for asbestos fibers.

C1+	Color of	Asbestos	C
City	ash	present	Comments
Dunkirk, NY	Rust	Negative	
Grand Rapids, MI	Beige	Ŭ ₁₁	
Greensboro, NC	Rust	11	
Hilton, NY	Tan	11	
Indianapolis, IN	Rust	11	Glass fibers present
Kalamazoo, MI	Light grey	11	
Lorton, VA	Brown	**	
Nangatuck, CT	Light rust	**	Blue glass fibers present
Saginaw, MI	Tan	11	Glass fibers present
Youngstown, OH	Beige	H	

The absence of detectable asbestos fibers in sewage sludges is not unexpected. The high temperatures of incineration are sufficient to alter the mineral form. The high organic matter content of sewage sludges may also contribute to the destruction of silicate minerals. Reducing reactions, brought about by carbon particles formed during coal combustion, have been reported (France et al. Carbon radicals, formed during incineration of the highly organic sewage sludges, may abstract oxygen from the asbestos structure, thus altering it. The toxicology associated with such altered asbestos structures is unknown. One might conclude that the absence of asbestos fibers in the sludge ashes could have been due to their absence in the original sludges before incineration. This is possible but asbestos fibers were found in 10 of 20 municipal sewage sludges analyzed earlier (Bishop et al. 1985; Patel-Mandlik et al. 1987). Asbestos in sewage sludge could result from fibers present in wastewater from the use of the many asbestos-containing products (tiles, gaskets, shingles, packings, friction products or textiles). The corrosive effects of asbestos-cement pipes may also contribute to wastewater on asbestos in sewage sludge. However, a study of the effects of drinking water on asbestos-cement pipes did not show a significant

difference in the asbestos levels of "before pipe" and "after pipe" samples (Hallenbeck et al. 1978).

One of the major problems in proper solid waste disposal or utilization is the unpredictable variability of its composition with time. Considering sludge ashes, this problem complicates their disposal in landfills or utilization, for instance, as an additive to cement. It may also necessitate individualized engineering techniques when such sludges are incinerated. The fact that incineration of sludges may indeed destroy asbestos is important since destruction of solid wastes by combustion methods is receiving major attention by federal and state regulatory agencies presently.

REFERENCES

- Bishop K, Ring SJ, Zoltai T, Manos CG, Ahrens VD, Lisk DJ (1985) Identification of asbestos and glass fibers in municipal sewage sludges. Bull Environ Contam Toxicol 34:301-308
- Environmental Protection Agency (1982) Interim method for the determination of asbestos in bulk insulation samples. EPA-600/M4-82-020, Environmental Monitoring Systems Laborarory, Research Triangle Park, NC 27711
- France JE, Grimm U, Anderson RJ, Kovack JJ (1984) Deposition and corrosion in gas turbines utilizing coal or coal-derived fuel. US Department of Energy Publication, DOE/METC/84-17, Morgantown, WV
- Hallenbeck WH, Chen EH, Hesse CS, Patel-Mandlik KJ, Wolff AH (1978) Is chrysotile asbestos released from asbestos-cement pipe into drinking water? J Amer Water Works Assn 70:97-102
- Patel-Mandlik KJ, Manos CG, Lisk DJ (1987) Identification of asbestos and glass fibers in sewage sludges in small New York State cities. Chemosphere (accepted for publication)

Received October 16, 1987; accepted December 26, 1987.